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The two-dimensional problem of advection–dispersion associated with a non-aqueous-
phase liquid (NAPL) pool is addressed using the boundary element method. The
problem is appropriately posed with an inhomogeneous boundary condition taking
into consideration the presence of the pool and the impermeable layer. We derive a
Fredholm integral equation of the first kind for the concentration gradient along the
pool location and compute the average mass transfer coefficient numerically using
the boundary-element method. Numerical results are in agreement with asymptotic
analytical solutions obtained for the cases of small and large Péclet number (Pex). The
asymptotic solution for small Pex, which is obtained by applying a novel perturbation
technique to the integral equation, is used to de-singularize the integral equation. Re-
sults predicted by this analysis are in good agreement with experimentally determined
overall mass transfer coefficients.

1. Introduction
Environmental consciousness has been augmented in recent years owing to the im-

pact of pollution on the quality of life. One topic of great concern is the contamination
of the subsurface by the introduction and movement of non-aqueous-phase liquids
(NAPLs), as it presents a threat to the long-term quality of soil and underground
water reserves. Most of the NAPLs are organic solvents and petroleum hydrocarbons
originating from leaking underground storage tanks, ruptured pipelines, surface spills,
hazardous waste landfills and disposal sites. When a NAPL spill which is more dense
than water infiltrates the subsurface environment, it will continue to migrate down-
wards leaving behind trapped ganglia until it encounters an impermeable layer. There,
it will form a flat source zone or pool with relatively limited spatial extent (Hunt,
Sitar & Udell 1988). On the other hand, NAPL pools with densities lower than that
of water will, as they approach the saturated region, spread laterally and float on the
water table in the form of a pool. Due to their low solubility in water, NAPL pools
may lead to long-lasting sources of groundwater contamination (Bradford, Abriola
& Rathfelder 1998).

The dissolution of a NAPL pool in a porous medium is modelled as an advection–
dispersion equation where the convection velocity is assumed to be uniform and
equal to the interstitial velocity of the water (Bear 1972). A fundamental difference
between NAPL advection–dispersion models and classical models that characterize
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Figure 1. Schematic representation of the conceptual physical model along with boundary condi-
tions. Groundwater with unidirectional velocity Ux is flowing over a NAPL pool of length lx. The
concentration over the pool is the saturation concentration cs, while a no-flux boundary condition
is imposed in the area not covered by the pool.

convection–diffusion processes (Leal 1992; Kays & Crawford 1993) is that, in the
former case, there is no momentum boundary layer formed.

Although there is a relatively large body of available literature on pool dissolution
(Chrysikopoulos, Voudrias & Fyrillas 1994; Holman & Javandel 1996; Hunt et al.
1988; Abriola & Pinder 1985; Seagren, Rittmann & Valocchi 1994; Leij, Toride &
van Genuchten 1993; Prakash 1984; Toride, Leij & van Genuchten 1993; to mention
a few), it does not address the fundamental problem of pool dissolution in the
sense that a homogeneous (Neumann, Dirichlet or a linear combination) boundary
condition on the plane of the pool is used. Imposing a Neumann boundary condition
requires an a priori assumption for the mass flux over the pool while imposing a
Dirichlet boundary condition leads to a mass flux over the impermeable layer. More
appropriate would be to define the concentration, i.e. a Dirichlet boundary condition,
at the pool location and impose no flux, i.e. Neumann boundary condition, in the
region not covered by the pool.

In this paper we address precisely this problem using ‘a powerful class of numerical
methods, known under the aliases boundary integral, boundary element, boundary-
integral-equation, panel ’ and Green’s function methods (Pozrikidis 1997, 1992) which
rely on Green’s second identity, or a generalization. We are able to derive a Fredholm
integral equation of the first kind for the concentration gradient along the pool
location. Analytical expressions are obtained for small and large Péclet numbers
(§ 3), while a collocation boundary-element method using constant functions over
each element is used to solve the integral equation numerically (§ 4). The agreement
between numerical results and the asymptotic analytical solutions is quite satisfactory.
In § 4.1, we compare the results predicted by this analysis with available experimentally
determined mass transfer coefficients.

2. Formulation
Consider a single-component NAPL pool which is denser than water and is formed

on top of an impermeable layer within a two-dimensional, saturated, homogeneous
and isotropic porous medium (figure 1). The steady-state transport of the dissolving
contaminant into the aqueous phase under uniform flow conditions is governed by

Ux

∂C(X,Z)

∂X
= Dx

∂2C(X,Z)

∂X2
+ Dz

∂2C(X,Z)

∂Z2
− λC(X,Z),
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where λ is the first-order decay coefficient, Dx and Dz are the longitudinal and vertical
hydrodynamic dispersion coefficients respectively, and Ux is the average interstitial
fluid velocity. The appropriate (inhomogeneous) boundary condition on top of the
impermeable layer is

∂C(X < 0, Z = 0)

∂Z
= 0, C(0 6 X 6 lx, Z = 0) = cs,

∂C(X > lx, Z = 0)

∂Z
= 0,

while the far-field conditions are

C(±∞, Z) = C(X,∞) = 0.

The problem is non-dimensionalized by scaling lengths with the pool dimension
lx and the concentration by the saturation concentration cs to obtain the classical
dimensionless parameters:

Pex =
Uxlx

Dx
, Pez =

Uxlx

Dz
, Λ =

λlx

Ux

.

The problem takes the form

∂c(x, z)

∂x
=

1

Pex

∂2c(x, z)

∂x2
+

1

Pez

∂2c(x, z)

∂z2
− Λc(x, z), (2.1)

with boundary conditions

∂c(x < 0, z = 0)

∂z
= 0, c(0 6 x 6 1, z = 0) = 1,

∂c(x > 1, z = 0)

∂z
= 0,

c(±∞, z) = c(x,∞) = 0.

The boundary-element formulation is derived in Appendix A and repeated here for
ready reference:

c(x, z) = −
√

Pex√
Pezπ

∫ 1

0

∂c(x′, z′ = 0)

∂z′

× exp [Pex/2(x− x′)] K0[
√

(Pex/4 + Λ)
√

Pex(x′ − x)2 + Pezz2] dx′. (2.2)

When evaluated on the plane of the pool (z = 0) we obtain a Fredholm integral
equation of the first kind for the concentration gradient along the pool location,
0 6 x 6 1,

1 = −
√

Pex√
Pezπ

∫ 1

0

∂c(x′, z′ = 0)

∂z′

× exp [Pex/2(x− x′)] K0[
√

Pex(Pex/4 + Λ)|x′ − x|] dx′. (2.3)

3. Analysis
In this section we obtain asymptotic solutions in the limit of small and large Pex.

For simplicity we assume that there is no decay, i.e. Λ = 0 and equation (2.3) simplifies
to

1 = −
√

Pex√
Pezπ

∫ 1

0

∂c(x′, z′ = 0)

∂z′
exp [Pex/2(x− x′)] K0[Pex/2|x′ − x|] dx′. (3.1)
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3.1. Large Pex

In the limit of large Pex (Pex →∞) we transform the variables x and x′ to X = xPex/2
and X′ = x′Pex/2, respectively. We also introduce the boundary-layer coordinate
ζ ′ = z′

√
Pez (see Appendix B). Equation (3.1) transforms to

1 = − 2

π
√

Pex

∫ ∞
0

∂c(X′, ζ ′ = 0)

∂ζ ′
exp [(X−X′)] K0[|X′ − X|] dX′, (3.2)

which suggests that the finite-plate, infinite-Pex problem is equivalent to that of a
semi-infinite plate. This problem can be easily solved by transforming to parabolic
coordinates. We will omit the details as the problem is treated in Greenberg (1978,
ex. 26.43, p. 561). In Appendix C (equation C 3) we show that indeed the expression
for the flux obtained in the semi-infinite case satisfies integral equation (3.2). Hence
in the limit Pex →∞ the solution is

∂c(X′, ζ ′ = 0)

∂ζ ′
= −

√
Pex

2πX′ ,
or

∂c(x, z = 0)

∂z
= −

√
Pez
πx

(3.3)

in the original variables. This result can also be obtained by boundary-layer analysis
(Appendix B).

3.2. Small Pex

When there is no convection and no first-order decay, i.e. Pex = Pez = 0 and Λ = 0,
equation (2.1) reduces to the two-dimensional Laplacian in an infinite domain. This
is well known to be an ill-posed problem, the nature of which is clearly demonstrated
in the boundary element formulation (equation (2.2)). To address this singular limit
of the partial differential equation (2.1), one would probably need to resort to
singular perturbation techniques, i.e. matched asymptotic expansions. However, using
the boundary element formulation (equations (2.2) and (2.3)) we can address this limit
in an elegant manner. We expand the kernel of integral equation (3.1), which we are
tempted to identify as the inner problem, to zeroth-order in Pex to obtain the weakly
singular integral equation

1 =

√
Pex√
Pezπ

∫ 1

0

∂c(x′, z′ = 0)

∂z′

(
γ + ln

[
Pex
4

]
+ ln [|x− x′|]

)
dx′.

In view of identity (C 1) we assume a solution of the form

∂c(x′, z′ = 0)

∂z′
=

a0√
x′(1− x′) ,

which reduces the integral equation to an algebraic equation with solution

a0 =

√
Pez
Pex

1

b
,

where

b = γ + ln

[
Pex
16

]
.

In Appendix D, the perturbation analysis is continued to higher order to obtain
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the following result for the concentration gradient along the pool (0 6 x 6 1), valid
for small Pex:

∂c(x, z = 0)

∂z
=

√
Pez√
Pex

(
1
b
− Pex(1 + b)

4b
(1− 2x)

)
√
x(1− x)

+ h. o. terms. (3.4)

4. Numerical results
In this section we perform a numerical evaluation of the concentration gradient

by applying the boundary element method to the integral equation (2.3). In general,
the solution of integral equations of the first kind is susceptible to oscillations due to
ill-conditioning of the influence matrix (Pozrikidis 1992, 1997). In the present analysis,
the integral equation (2.3) exhibits regular behaviour.

The numerical method used is the collocation boundary element method (Pozrikidis
1992, 1997), where the local basis functions are step functions, i.e. the boundary
(0 6 x 6 1) is discretized into a collection of straight segments (boundary elements),
and it is assumed that the unknown function is constant over each element. In view
of the results of § 3, we expect a singular value for the concentration gradient at the
two end points x = 0, 1. Hence, we ‘de-singularize’ integral equation (3.1) by defining
the function f in the following way:

f(x) = −
√

Pex
Pez

√
x(1− x)

∂c(x, z = 0)

∂z
.

In addition, to minimize numerical error, we rewrite integral equation (2.3) in the
following form:

exp [− 1
2
Pexx] =

1

π

∫ 1

0

f(x′)
exp [− 1

2
Pexx

′)] K0[
√

Pex(Pex/4 + Λ)|x′ − x|]√
x′(1− x′) dx′.

The discrete form of this equation is

exp [− 1
2
Pexxj] =

N∑
i=1

fiAij , (4.1)

where fi is the constant value of the function f(x′) over the ith element and j =
1, 2, . . . , N. The influence matrix is defined as

Aij =

∫ xi+1

xi

exp [− 1
2
Pexx

′)] K0[
√

Pex(Pex/4 + Λ)|x′ − xj |]√
x′(1− x′) dx′,

where xi and xi+1 are the starting and ending points of the ith element respectively,
and xj is the midpoint of the jth element. The coefficients of matrix A are computed by
Gauss quadratures (Press et al. 1989): Gauss–Legendre for the non-singular elements
and Gauss–Chebyshev for the singular elements.

The N-system of equations (4.1) is solved by Gaussian elimination (Press et al.
1989). Experimentation showed that 100 elements are adequate to obtain satisfactory
accuracy for any value of Pex. In figure 2 we compare the results of the numerical pro-
cedure with the asymptotic results for high and low Pex obtained in § 3, equations (3.3)
and (3.4) respectively. The very good agreement in both limiting cases suggests that
this simple numerical technique is quite effective and accurate for any value of Pex.

In figure 3 we show numerical results for different Pex. As indicated by the finite
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Figure 2. Comparison between the asymptotic results (thick-dashed curves) and numerical results
(fine-solid curves): (a) Pex = 0.001 and (b) Pex = 1000. Λ = 0.
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Figure 3. Computed values of the function f for the values of Pex shown on the figure. Λ = 0.

value of f at x = 0 and 1, it is apparent that the singular nature of the concentration
gradient at the leading and trailing edges of the pool is present for any finite value
of Pex, while the singularity at the trailing edge disappears only at infinite Pex (§ 3.1).

In figure 4, we show a contour plot of the concentration field at large (Pex =
Pez = 100) and small (Pex = Pez = 0.1) Péclet numbers, obtained by substituting
the expression for the concentration gradient (§ 3) in equation (2.2) and integrating
by Gaussian quadrature. The effect of convection is quite distinct in the two cases:
at large Péclet number (convection-dominated mass transport) the contaminant is
convected downstream and the diffusion process is restricted to a boundary layer
region close to the pool; at small Péclet number (diffusion-dominated mass transport)
the effect of convection is only apparent at large distances from the pool, while close
to the pool the concentration gradient is almost uniform.

4.1. Average (overall) mass transfer coefficients

The average mass transfer coefficient is defined as (Chrysikopoulos et al. 1994;
Incropera & DeWitt 1990)

h̄m = − De
lxcs

∫ lx

0

∂C(X,Z = 0)

∂Z
dX = −De

lx

∫ 1

0

∂c(x, z = 0)

∂z
dx, (4.2)
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Figure 4. A contour plot of the concentration field for Pex = 100 (a) and Pex = 0.1 (b). In both
calculations Pex = Pez and Λ = 0.

where De = D/τ∗ is the effective molecular diffusion coefficient; D is the molecular
diffusion coefficient and τ∗ is the tortuosity. For the two limiting cases of § 3 we obtain

h̄m = −De
lx

√
Pez
Pex

π

b
for small Pex (4.3)

and

h̄m =
De

lx
2

√
Pez
π

for large Pex. (4.4)

In figure 5(a) we compare the Sherwood number (Incropera & DeWitt 1990), defined
as

Sh =
lx

De

√
Pex
Pez

h̄m, (4.5)

and calculated using expressions (4.3) and (4.4) with that obtained from numerical
results. As indicated in figure 5(a), for Pex > 10 expression (4.4) will predict the
numerical result quite accurately.

So far, we have not investigated the effect of the decay coefficient (Λ) on the
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Figure 5. Computed values of the Sherwood number, equation (4.5). In (a) (Λ = 0) the thick-dashed
curve corresponds to equation (4.3) (small Pex) and the thin-dashed curve to equation (4.4) (large
Pex). The thin solid curve corresponds to numerical results. In (b) the solid curves correspond to
numerical results for the values of the decay coefficient (Λ) shown on the figure. The dashed curve
corresponds to the asymptotic result (equation (4.6)) for Λ = 10.

diffusion process. In Appendix B we obtain an expression for the mass transfer
coefficient in the limit of high Pex:

h̄m =
De
√

Pez
lx

{
erf [
√
Λ]

(√
Λ+

1

2
√
Λ

)
+

e−Λ√
π

}
. (4.6)

The asymptotic result (4.6), shown as a dashed curve in figure 5(b), is in good
agreement with the numerical result for large Pex. Also in figure 5(b) we demonstrate
that the reaction rate would enhance the diffusion process and lead to higher mass
transfer coefficients. With reaction the concentration field at any point outside the
pool is reduced thereby resulting in higher concentration gradients.

Experimental results for mass transfer coefficients are quite limited. In figure 6,
results for h̄m predicted by this work are compared with those obtained experimentally
by Lee (1999) in a circular (lr = 3.8 cm) trichloroethylene (TCE) pool dissolution
experiment in a homogeneous, fully saturated bench-scale aquifer under various
interstitial velocities. To make the comparison, we use lx corresponding to a square
pool with a surface area equal to that of the circular disc, i.e. lx = lr

√
π. The dispersion

coefficients are evaluated using (Bear & Verruijt 1987)

Dx = αLUx + De, Dz = αVUx + De, (4.7)

where αL and αV are the longitudinal and vertical dispersivities respectively. Lee (1999)
has obtained the following values for the parameters: De = 2.11 × 10−2 cm2 h−1,
αL = 0.259 cm, and αV = 0.019 cm. In figure 7 we show a plot of Pex as a func-
tion of the interstitial velocity Ux. The resulting h̄m (solid line in figure 6) is in
good agreement with the experimental values. Although it slightly overestimates the
mass transfer coefficient, the following rationale leads to the conclusion that two-
dimensional predictions should underestimate the mass transfer coefficient. Consider,
for example, a square pool in a physical (three-dimensional) experiment. The four
sides will contribute significantly to mass transport as the concentration gradient is
singular close to the edges. The mass transport from an equal-size square taken from
an infinite strip will, however, be less since the concentration gradients at the two
fictitious sides (cut from the strip) will be lower. As a justification, in Appendix E
we have obtained an exact three dimensional result for the mass transport associated
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perimental results (solid points) obtained by Lee (1999). The three-dimensional result obtained in
Appendix E (equation (4.8)) gives a value of h̄m = 0.007 cm h−1 for Ux = 0.
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De = 2.11 × 10−2 cm2 h−1, αL = 0.259 cm and lx = 3.8

√
π cm. For large Ux, Pex reaches the

asymptotic value of lx/aL = 26.01.

with a circular liquid pool with no advection, i.e. in the limit Ux → 0:

h̄m =
4De
πlr

. (4.8)

Although for the two-dimensional case the average mass transfer coefficient is zero, the
three-dimensional result predicts a finite mass transfer coefficient h̄m = 0.007 cm h−1

(equation (4.8)).

5. Conclusions
We have presented a boundary element formulation and a numerical solution of the

problem of advection–dispersion mass transport associated with a NAPL pool. The
problem is appropriately modelled by defining the concentration, i.e. Dirichlet bound-
ary condition, at the pool location and imposing no flux, i.e. Neumann boundary
condition, in the area not covered by the pool.
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We derive a Fredholm integral equation of the first kind for the concentration gra-
dient. Analytical expressions are obtained for small and large Péclet (Pex) numbers,
while a collocation boundary-element method using constant functions over each
element is used to solve the integral equation numerically for any Pex. The agree-
ment between numerical results and the two asymptotic analytical solutions is quite
satisfactory which suggests that the numerical technique is effective and accurate for
any value of Pex. There is a fairly good agreement between the present analysis and
the experimental data, even though the latter were obtained in a three-dimensional
experiment. In the case of no advection, comparison between two-dimensional and
three-dimensional analytical results suggests that the former would predict a lower
mass transfer coefficient.

The author would like to express his gratitude to Mikis, Fedra, Keiko Nomura and
Costas Pozrikidis for their continuous support. The author would also like to thank
the referee who pointed out an error in the proof in Appendix C.

Appendix A. Boundary-element formulation
The transformations of the dependent variable

c(x, z) = W (x, z) exp

[
xPex

2

]
and of the independent variables

x =
χ√
Pex

, z =
ζ√
Pez

,

reduces equation (2.1) to the two-dimensional modified Helmholtz equation:

∇2
(χ,ζ)W − ( 1

4
Pex + Λ)W = 0, (A 1)

with boundary conditions

∂W (ζ = 0)

∂ζ
= 0, χ < 0,

W (ζ = 0) = exp

[
−χ
√

Pex

2

]
, 0 6 χ 6

√
Pex,

∂W (ζ = 0)

∂ζ
= 0, χ >

√
Pex,

and the constraint that the concentration field decays to zero far away from the pool.
Then, as a simple generalization of Green’s theorem (Arfken 1985), we have∫

D

(GLW −WLG) dτ =

∫
∂D

(G∇W −W∇G) · dσ,

where L is the modified Helmholtz operator ∇2
(χ′ ,ζ ′) − (Pex/4 + Λ), the domain D is

the upper half-plane and the boundary (∂D) the line ζ ′ = 0. By choosing G to be the
Green’s function that is symmetric about ζ ′ = 0, i.e.

LG = −δ(χ′ − χ, ζ ′ − ζ), (A 2)

∂G(ζ ′ = 0)

∂ζ ′
= 0,
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we obtain the boundary element formulation of problem (A 1)

W (χ, ζ) = −
∫ √Pex

0

∂W (χ′, ζ ′ = 0)

∂ζ ′
G(χ′, χ, ζ ′ = 0, ζ) dχ′. (A 3)

The Green’s function satisfying equation (A 2) can be obtained using the method of
images (Greenberg 1978)

G =
1

2π
K0[
√

(Pex/4 + Λ)
√

(χ′ − χ)2 + (ζ ′ − ζ)2]

+
1

2π
K0[
√

(Pex/4 + Λ)
√

(χ′ − χ)2 + (ζ ′ + ζ)2],

where K0 represents the modified Bessel function of the second kind of order 0.
Expressing equation (A 3) in the original variables we obtain

c(x, z) = −
√

Pex√
Pezπ

∫ 1

0

∂c(x′, z′ = 0)

∂z′

× exp [−Pex/2(x′ − x)] K0[
√

(Pex/4 + Λ)
√

Pex(x′ − x)2 + Pezz2] dx′.

Appendix B. Boundary-layer approximation
In the limit of large Péclet number (Pex � 1) we introduce the boundary-layer

coordinate ζ = z
√

Pez , and expand the concentration field (c) in powers of 1/Pex.
To leading order we obtain the boundary-layer problem

∂c(x, ζ)

∂x
=
∂2c(x, ζ)

∂ζ2
− Λc(x, ζ). (B 1)

Considering the parabolic nature of the problem (there is no diffusion in the x-
direction) the boundary conditions are also simplified:

c(x = 0, ζ) = 0, c(x, ζ = 0) = 1, c(x,∞) = 0. (B 2)

The problem can be solved by taking Laplace transforms with respect to the variable
x. The final result is

c(x, ζ) =
eζ
√
Λ

2
erfc

[
ζ + 2x

√
Λ

2
√
x

]
+

e−ζ
√
Λ

2
erfc

[
ζ − 2x

√
Λ

2
√
x

]
. (B 3)

When Λ = 0 we obtain the classical result c(x, ζ) = erfc
[
ζ/(2
√
x)
]
.

The average mass transfer coefficient is obtained by (see § 4.1)

h̄m = −De
√

Pez
lx

∫ 1

0

∂c(x, ζ = 0)

∂ζ
dx. (B 4)

Differentiating equation (B 3) with respect to ζ, taking the limit ζ → 0 we obtain

∂c

∂ζ
(c, ζ = 0) = −√Λ erf [

√
Λx]− e−Λx√

πx
.

Substituting above expression into equation (B 4), we obtain the following expression
for the mass transfer coefficient:

h̄m =
De
√

Pez
lx

{
erf [
√
Λ]

(√
Λ+

1

2
√
Λ

)
+

e−Λ√
π

}
,
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which simplifies to the classical result

h̄m =
2De
√

Pez

lx
√
π

,

when Λ = 0.

Appendix C. Useful integrals
For 0 6 x 6 1 we have ∫ 1

0

ln (|x− x′|)√
x′(1− x′) dx′ = −π ln (4) (C 1)

∫ 1

0

x′ ln (|x− x′|)√
x′(1− x′) dx′ = −πx+

π

2
− π ln (2). (C 2)

For 0 6 x < ∞ we have ∫ ∞
0

e(x−x′) K0(|x− x′|)√
x′

dx′ =
π
√
π√
2
. (C 3)

The first two integrals (C 1) and (C 2) can be obtained by an appropriate change
of variables in the integrals listed in Magnus & Oberhettinger (1949) and Magnus,
Oberhettinger & Soni (1966). For a more rigorous approach we suggest Porter &
Stirling (1990).

The last integral (C 3) is not listed; in what follows we offer an indirect proof, i.e.
we assume that is true and show that it leads to consistent results. Two integrals that
would be useful in proving (C 3) are∫ ∞

0

e−θ′ K0(θ
′)√

θ′(x+ θ′)
dθ′ =

πex K0(x)√
x

(C 4)

and ∫ ∞
0

e−θ′ K0(θ
′)√

θ′
dθ′ =

π
√
π

2
. (C 5)

The first integral is listed in Gradshteyn & Ryzhik (1994, 6.624), while the second can
be obtained by multiplying the first by x and taking the limit x → ∞. To proceed,
we define the variable θ = x− x′ and split integral (C 3) into the two regions (−∞, 0)
and (0, x): ∫ ∞

0

e−θ K0(θ)√
x+ θ

dθ +

∫ x

0

eθ K0(θ)√
x− θ dθ =

π
√
π√
2
,

where in the first integral we have transformed θ to −θ. We re-write the integral in
the form ∫ x

0

φ(θ)√
x− θ dθ =

∫ ∞
0

e−θ K0(θ)√
θ

dθ −
∫ ∞

0

e−θ K0(θ)√
x+ θ

dθ, (C 6)

where we have substituted the integral (C 5) for π
√
π/2, and we have defined φ(θ) ≡

eθ K0(θ). Abel’s integral equation:

G(x)− G(0) =

∫ x

0

(x− y)−αφ(y) dy
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has the solution (Magnus & Oberhettinger 1949)

φ(y) =
sin (απ)

π

∫ y

0

(y − x)α−1 dG(x)

dx
dx.

Solving equation (C 6) according to this, we obtain

φ(x) =
1

2π

∫ x

0

∫ ∞
0

e−θ′ K0(θ
′)

(θ + θ′)3/2
√
x− θ dθ′ dθ.

Switching the order of integration and performing the integral with respect to θ
results in

φ(x) =

√
x

π

∫ ∞
0

e−θ′ K0(θ
′)√

θ′(x+ θ′)
dθ′. (C 7)

Simplifying this expression using integral (C 4) we obtain the result φ(x) = ex K0(x).
QED.

Appendix D. Higher-order correction in Pex → 0

Continuing to higher order in Pex, we expand the kernel in integral equation (3.1)
to first order and, consequently, assume a solution for the concentration gradient of
the form

∂c(x′, z′ = 0)

∂z′
=

a0 + a1(x
′)√

x′(1− x′) ,
where a1 is of higher order compared to a0. The problem associated with a0 was
addressed in § 3.2. The integral equation associated with a1 is∫ 1

0

a1(x
′)√

x′(1− x′)
(
γ + ln

[
Pex
4

]
+ ln [|x− x′|]

)
dx′

= a0Pex

∫ 1

0

(x′ − x)(γ + ln [Pex/4] + ln [|x− x′|])
2
√
x′(1− x′)

=

√
PexPezπ(1 + b)

4b
(1− 2x),

where b was defined in § 3.2.
In view of identities (C 1) and (C 2) we assume a solution of the form

a1(x
′) = a0

1 + a1
1x
′,

which reduces the integral equation to an algebraic system of equations, for the
unknowns a0

1 and a1
1, by setting the coefficients of x0 and x1 equal to zero. We obtain

the results

a0
1 = −

√
PezPex(1 + b)

4b
, a1

1 =

√
PezPex(1 + b)

2b
.

Appendix E. Laplace equation over a circular pool
Consider three-dimensional diffusion mass transfer from a circular pool with no

convection. The concentration field satisfies the Laplace equation

∇2c =
∂2c

∂x2
+
∂2c

∂y2
+
∂2c

∂z2
= 0,
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with boundary conditions

c(x2 + y2 6 1, z = 0) = 1,

and that c decays to zero in the far field. We have used the radius of the pool (lr)
as the characteristic length for non-dimensionalization and that for no advection the
dispersion coefficients are equal, i.e. Dx = Dy = Dz (equations (4.7)). A more natural
coordinate system to address this problem is the oblate spheroidal (Happel & Brenner
1965; Landau & Lifshitz 1960) which is related to the Cartesian by

x = cosh ξ sin η cosφ, y = cosh ξ sin η sinφ, and z = sinh ξ cos η.

It is easy to realize that ξ is a similarity transformation and the Laplace equation
simplifies to

d

dξ

[
cosh ξ

dc

dξ

]
= 0,

with boundary conditions

c(ξ = 0) = 1, and c(ξ →∞) = 0.

The solution can be readily found to be

c(ξ) = 1− 4

π
tan−1

[
tanh

ξ

2

]
,

which leads to the following expression for the concentration gradient:

∂c

∂z
(z = 0, x2 + y2 6 1) = − 2

π
√

1− (x2 + y2)
.

The averaged mass transfer coefficient is given by

h̄m =
4De
πlr

∫ 1

0

rdr√
1− r2

=
4De
πlr

.
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